
Use VEC/Infinity USB
Foot Pedal as a

Keyboard Under Linux
I own a 3-switch USB foot pedal that looks like this:

This is how I got it working under Linux so that I can assign any
keysym to each button which I can then bind to functions in my
window manager or programs as I see fit.

(It is unintuitive to me that the left pedal is marked FWD and the

1

right REW, but it doesn’t matter since we will map them to
whatever function we want.)

I’m unsure of its ancestry, but the label on the back of my pedal
says “Infinity IN-USB-1” and I’ve seen newer pedals online called
IN-USB-2 which have a different case but as far as I can tell
provide an identical interface (same idVendor and idProduct,
same scancodes). The In-USB-2 pedals, by VEC Electronics, also
seem to be the same as some of the X-keys pedals sold by P.I.
Engineering. So this guide should apply to any of them, and a
similar process will likely work to get other USB foot pedals
setup.

For more direct, less detailed instructions on getting your VEC
footpedal to work, see the Parlatype documentation on
footpedals.

evdev
When I plug my pedal in, dmesg reports the following
information:

[81924.859319] usb 10-1: new low-speed USB device
number 25 using uhci_hcd
[81925.261424] usb 10-1: New USB device found,
idVendor=05f3, idProduct=00ff
[81925.261427] usb 10-1: New USB device strings:
Mfr=1, Product=2, SerialNumber=0
[81925.261429] usb 10-1: Product: VEC USB Footpedal
[81925.261431] usb 10-1: Manufacturer: VEC
[81925.275747] input: VEC VEC USB Footpedal as
/devices/pci0000:00/0000:00:1d.2/usb10/10-1/10-

2

http://www.veccorp.com/foot-controls.html
https://xkeys.com/xkeys/footpedals.html
http://gkarsay.github.io/parlatype/footpedals/footpedals.html
http://gkarsay.github.io/parlatype/footpedals/footpedals.html

1:1.0/0003:05F3:00FF.0022/input/input41
[81925.276084] hid-generic 0003:05F3:00FF.0022:
input,hiddev0,hidraw4: USB HID v1.00 Device [VEC VEC
USB Footpedal] on usb-0000:00:1d.2-1/input0

This is a good sign. Already we see the vendor ID (05F3) and
product ID (00FF), which we will use to match the device in
udev rules, and udev recognizes it as “VEC USB Footpedal”. The
kernel’s HID driver seems to recognize it as an input device and
exposes its events as a character device via evdev.

Sure enough, running evtest (in debian: apt install evtest)
sees it and shows the /dev/input/eventX node it was assigned:

...
/dev/input/event4: VEC VEC USB Footpedal
...

In my case it is event4 (this will differ depending on how many
input devices you have plugged in), and choosing 4 from the
evtest prompt then pressing the foot pedal switches shows that
it is detecting the events!

Output of $ evtest after pressing and releasing each pedal from left
to right

Event: time 1535305153.576554, type 4 (EV_MSC), code 4
(MSC_SCAN), value 90001
Event: time 1535305153.576554, type 1 (EV_KEY), code
256 (BTN_0), value 1
Event: time 1535305153.576554, --------------
SYN_REPORT ------------

3

https://en.wikipedia.org/wiki/Evdev

Event: time 1535305153.696549, type 4 (EV_MSC), code 4
(MSC_SCAN), value 90001
Event: time 1535305153.696549, type 1 (EV_KEY), code
256 (BTN_0), value 0
Event: time 1535305153.696549, --------------
SYN_REPORT ------------
Event: time 1535305154.224555, type 4 (EV_MSC), code 4
(MSC_SCAN), value 90002
Event: time 1535305154.224555, type 1 (EV_KEY), code
257 (BTN_1), value 1
Event: time 1535305154.224555, --------------
SYN_REPORT ------------
Event: time 1535305154.352584, type 4 (EV_MSC), code 4
(MSC_SCAN), value 90002
Event: time 1535305154.352584, type 1 (EV_KEY), code
257 (BTN_1), value 0
Event: time 1535305154.352584, --------------
SYN_REPORT ------------
Event: time 1535305155.992658, type 4 (EV_MSC), code 4
(MSC_SCAN), value 90003
Event: time 1535305155.992658, type 1 (EV_KEY), code
258 (BTN_2), value 1
Event: time 1535305155.992658, --------------
SYN_REPORT ------------
Event: time 1535305156.136669, type 4 (EV_MSC), code 4
(MSC_SCAN), value 90003
Event: time 1535305156.136669, type 1 (EV_KEY), code
258 (BTN_2), value 0
Event: time 1535305156.136669, --------------
SYN_REPORT ------------

From this output we can see the scancodes sent by each pedal
switch, and the default keycodes they are translated to by the

4

kernel (by default they act like the left, middle, and right mouse
buttons).

Table 1. Summary of default scancodes and keycodes sent by the
pedal

Pedal Scancode (hex) Keycode

Left 90001 BTN_0 (left mouse
button)

Center 90002 BTN_1 (middle
mouse button)

Rightt 90003 BTN_2 (right mouse
button)

So it seems to work out-of-the-box, with only two issues:

1. Even though the kernel sees the pedal, it is invisible to Xorg
and the programs I actually want to use with it.

2. Having it act like mouse buttons is not very useful; I want to
re-map its keysyms to something I can use as hotkeys.

Xorg
Pressing the pedals has no apparent effect under X. Running xev
and pushing the switches also has no effect. It is not included in
the output of libinput list-devices — Xorg is simply not seeing
the footpedal as in input device.

One slight frustration is that manually running udevadm trigger
allows X to see the pedal, but after unplugging and plugging it
back in results in it once again being ignored.

5

The problem is that udev is not tagging the pedal as a keyboard
or a mouse when it is added during the hotplug event, so X is
ignoring it. This can be seen by running the udevadm info tool:

Output of $ udevadm info /dev/input/event

udevadm info /dev/input/event4
P: /devices/pci0000:00/0000:00:1d.2/usb10/10-1/10-
1:1.0/0003:05F3:00FF.0022/input/input41/event4
N: input/event4
S: input/by-id/usb-VEC_VEC_USB_Footpedal-event-if00
S: input/by-path/pci-0000:00:1d.2-usb-0:1:1.0-event
E: DEVLINKS=/dev/input/by-path/pci-0000:00:1d.2-usb-
0:1:1.0-event /dev/input/by-id/usb-
VEC_VEC_USB_Footpedal-event-if00
E: DEVNAME=/dev/input/event4
E: DEVPATH=/devices/pci0000:00/0000:00:1d.2/usb10/10-
1/10-1:1.0/0003:05F3:00FF.0022/input/input41/event4
E: ID_BUS=usb
E: ID_INPUT=1
E: ID_MODEL=VEC_USB_Footpedal
E: ID_MODEL_ENC=VEC\x20USB\x20Footpedal
E: ID_MODEL_ID=00ff
E: ID_PATH=pci-0000:00:1d.2-usb-0:1:1.0
E: ID_PATH_TAG=pci-0000_00_1d_2-usb-0_1_1_0
E: ID_REVISION=0100
E: ID_SERIAL=VEC_VEC_USB_Footpedal
E: ID_TYPE=hid
E: ID_USB_DRIVER=usbhid
E: ID_USB_INTERFACES=:030000:
E: ID_USB_INTERFACE_NUM=00
E: ID_VENDOR=VEC
E: ID_VENDOR_ENC=VEC\x20
E: ID_VENDOR_ID=05f3

6

E: LIBINPUT_DEVICE_GROUP=3/5f3/ff:usb-0000:00:1d.2-1
E: MAJOR=13
E: MINOR=68
E: SUBSYSTEM=input
E: USEC_INITIALIZED=81926725812

The device has the ID_INPUT tag, but no ID_INPUT_KEYBOARD or
ID_INPUT_MOUSE tag which Xorg’s evdev/libinput drivers look for.
(For some details on how udev decides what is a keyboard or
mouse, see Matt Fischer’s “How Does udev Know What’s a
Keyboard or Mouse?”) Luckily the fix is a simple one-line udev
rule file (thanks to Parlatype developer Gabor Karsay for
providing this solution in Parlatype Issue 28):

/etc/udev/rules.d/10-vec-usb-footpedal.rules

ACTION=="add|change", KERNEL=="event[0-9]*",
ATTRS{idVendor}=="05f3", ATTRS{idProduct}=="00ff",
ENV{ID_INPUT_KEYBOARD}="1"

Create a file called /etc/udev/rules.d/10-vec-usb-
footpedal.rules containing that line. No need to run any
command to refresh udev, the new file should automatically be
detected. Now whenever the foot pedal is plugged in, it will be
given the ID_INPUT_KEYBOARD=1 tag and Xorg/libinput will use it as
an input device!

7

https://web.archive.org/web/20220127032931/https://www.mattfischer.com/blog/archives/182
https://web.archive.org/web/20220127032931/https://www.mattfischer.com/blog/archives/182
https://gkarsay.github.io/parlatype/
https://github.com/gkarsay/parlatype/issues/28

Remapping keysyms with
udev hwdb
Having three extra mouse buttons to use with my foot is not
very useful to me. We will fix this with a udev hwdb file.

Create a file under /etc/udev/hwdb.d/ (I put mine in
/etc/udev/hwdb.d/60-usb-footpedal.hwdb) containing these lines:

/etc/udev/hwdb.d/60-usb-footpedal.hwdb

evdev:input:b*v05F3p00FF*
 KEYBOARD_KEY_90001=f14
 KEYBOARD_KEY_90002=f15
 KEYBOARD_KEY_90003=f16

This syntax is good for udev version 220 and
later. Make sure to capitalize the hexadecimal
Vendor and Product IDs.

This time we do need to inform the system to update the binary
hwdb file:

$ sudo systemd-hwdb update

And then unplug and replug the device.

The first line of the hwdb file matches our device (vendor 05F3,
product 00FF), and the subsequent lines map a scancode (hex) to
a keycode. I chose the F14, F15, and F16 function keys, but a list

8

https://www.freedesktop.org/software/systemd/man/hwdb.html

of available keycodes is defined in /usr/include/linux/input-
event-codes.h; to use the names #defined in that file as hwdb
keycodes, simply convert them to lowercase and remove the
key_ prefix.

The comments at the top of the system-wide configuration file
contain some documentation: /lib/udev/hwdb.d/60-
keyboard.hwdb And for more generic instructions on using
udev to remap keys, see Kim Jongyul’s “Linux keymapping with
udev hwdb.”

The default (pc+us) xkb keyboard layout on my computer maps
F14, F15, and F16 to the XF86Launch5, XF86Launch6, and XF86Launch7
keysyms, respectively. Using those keysyms, each pedal switch
can be mapped as a hotkey in your desktop or window manager.

Use new function keys with
Vim
Unfortunately not all programs can bind to arbitrary keysyms
like the XF86* keys. A list of keys available to vim, for example,
can be found at :h t_ku.

One solution is to use xmodmap to map the keycodes to the actual
F14, F15, and F16 keysyms. Use xev to find out what keycode X is
seeing for each pedal. Here’s example output from the left
pedal:

KeyPress event, serial 34, synthetic NO, window
0x400001,
 root 0x439, subw 0x0, time 154723303, (340,452),

9

https://github.com/torvalds/linux/blob/master/include/uapi/linux/input-event-codes.h
https://github.com/torvalds/linux/blob/master/include/uapi/linux/input-event-codes.h
https://github.com/systemd/systemd/blob/master/hwdb.d/60-keyboard.hwdb
https://github.com/systemd/systemd/blob/master/hwdb.d/60-keyboard.hwdb
https://yulistic.gitlab.io/2017/12/linux-keymapping-with-udev-hwdb/
https://yulistic.gitlab.io/2017/12/linux-keymapping-with-udev-hwdb/
http://vimdoc.sourceforge.net/htmldoc/term.html#t_ku

root:(1051,943),
 state 0x10, keycode 192 (keysym 0x1008ff45,
XF86Launch5), same_screen YES,
 XLookupString gives 0 bytes:
 XmbLookupString gives 0 bytes:
 XFilterEvent returns: False

The thing to note is the “keycode” is 192. Then to remap the
keysyms:

$ xmodmap -e "keycode 192 = F14"
$ xmodmap -e "keycode 193 = F15"
$ xmodmap -e "keycode 194 = F16"

I put these commands in my .xsession file so they run every
time I log in to X. Key autorepeating can be supressed (so that
you can leave your foot on the pedal without it triggering more
key presses) with the xset command:

$ xset -r 193

The disadvantage of simply placing xmodmap/xset commands in
the .xsession file is that they need to be re-run every time the
pedal is unplugged. One solution would be to use a udev rule to
run a script containing those xmodmap commands every time the
pedal is plugged back in.

Both gvim and neovim now see the function keys and you can
map them as normal:

10

inoremap <F15> Middle pedal

But depending on your terminal settings, vim in the console
probably still does not recognize the keys. To fix it, set vim’s
keycodes to whatever escape sequence your terminal sends for
each pedal (in insert mode type Ctrl-Q then hit the pedal).

I have these lines in my .vimrc file, which allows me to map F14
et al. in vim (gvim and neovim ignore these settings):

" Map higher F keys to codes sent by libvte
" The escape codes are literal:
" type Ctrl-q then press the footpedal switch
set <F14>=^[[26~
set <F15>=^[[28~
set <F16>=^[[29~

Success at last!

For some background on terminal escape codes for function
keys see Phil Gold’s “Terminal Function Key Escape Codes”

For anyone planning on transcribing audio in neovim, I recently
came across this plugin for controlling the playback of audio:
gallcaras/transcribe.nvim

Other options
A Python program called footcontroller by rolfofsacony reads
events from the evdev device (/dev/input/eventX) and can be

11

http://aperiodic.net/phil/archives/Geekery/term-function-keys.html
https://github.com/gaalcaras/transcribe.nvim
https://sourceforge.net/projects/footcontroller/
https://sourceforge.net/u/rolfofsaxony/profile/

configured to issue key strokes (via xdotool) or run scripts in
response to stepping on the pedals. The program allows for
configuring several sets of commands and switching between
them (so you can use your foot pedal for different purposes:
transcription, controlling your media player, to launch apps, to
exit vim, etc.) The user manual for the program includes several
examples and instructions for switching between command sets
using hotkeys. Footcontroller can be used in lieu of the
xmodmap step above.

In addition to the evdev device, the kernel’s HID driver also
creates a hiddev node (/dev/usb/hiddevX) which provides a more
raw interface to the pedal state. Here is a C program which
reads the HID node to handle pedal events; it includes a sample
program to control mplayer using the pedal: infinity-pedal
driver

Because the pedal is an HID device, it should be possible to write
a cross-platform program to read it using something like HIDAPI

Mac OS X
P.I. Engineering provides software that works with their devices
(including the IN-USB-1 and IN-USB-2 foot pedals): Software for
X-keys.

Most impressive is a GUI program called ControllerMate by
OrderedBytes, which provides a powerful graphical scripting
language for triggering actions from input devices. Best of all is
they offer a free version especially for X-keys devices which
works with our pedal.

12

https://github.com/jordansissel/xdotool
https://github.com/torvalds/linux/blob/master/Documentation/hid/hiddev.rst
https://github.com/squires/infinity-pedal
https://github.com/squires/infinity-pedal
http://www.signal11.us/oss/hidapi/
https://xkeys.com/support.html
https://xkeys.com/support.html
https://www.orderedbytes.com/controllermate/xkeys/

	Use VEC/Infinity USB Foot Pedal as a Keyboard Under Linux
	evdev
	Xorg
	Remapping keysyms with udev hwdb
	Use new function keys with Vim
	Other options
	Mac OS X

